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1 Introduction

The magnitude of the roll rate for a fixed-wing aircraft is limited. For some systems such as the
aerobatic aircraft, the maximum roll rate can be very high, allowing them to perform a change
of roll angle that can be considered almost instantaneous. The assumption, on the other hand,
cannot be applied to some other systems, like non-acrobatic airplanes and aircraft with passengers
or sensitive equipment on board. Therefore, a kinematic model for an aircraft should not only take
the maximum roll angle into account but also the maximum roll rate.

If the aircraft’s maximum roll rate is limited, it is conceivable that a constant roll rate that is
close to the limit would apply to its rolling maneuvers. As a result, based on the constant roll rate
assumption, this technical report derives a kinematic model that can be applied to the trajectory
planning of a fixed-wing aircraft. The model only considers constant altitude maneuvers, meaning
that the lift of the aircraft balances the roll related rotation of the weight, leading to a predictable
yaw rate depending on the momentary roll angle. Furthermore, the velocity of the aircraft is as-
sumed to be constant, and the effects of wind are neglected. In summary, the assumptions are the
following:

1. Constant roll rate.

2. Constant velocity.

3. Constant altitude.

4. Wind effects neglected.

The above assumptions will be addressed in future work, as the current goal only focuses on showing
the derivation and the applicability of the kinematic model despite those limitations.

2 Derivation of the Kinematic Model

The following section contains the derivation of the kinematic model that estimates a constant
roll rate trajectory. For the derivation, the altitude of the aircraft is ignored. As a result, the
position of the aircraft in x and y can be described in the complex plane as c(t) = x(t) + iy(t).
Correspondingly, the velocity of the aircraft can also be expressed as v(t) = vx(t) + ivy(t). The
main equations from which the model is derived are the following:

φ(t) = rt+ φ0 (2.1)



2.1 Simplified Case

with t being time, r being the constant roll rate, and φ0 being the initial roll angle. From the roll
angle, the curvature ψ̇, namely the yaw rate, can be expressed as follows:

ψ̇(t) = − g
V

tanφ(t) (2.2)

with g being the gravitational constant, and V being the constant total velocity. The above
relation is based on the lift compensation for the rotated weight vector due to a rolling maneuver.
Consequently, the yaw angle of the aircraft is defined as

ψ(t) =

∫ t

0
ψ̇(u)du+ ψ0 (2.3)

with ψ0 being the initial yaw angle of the aircraft. Using the yaw angle, the velocity can be
described as

v(t) = V (cosψ(t) + i sinψ(t)) (2.4)

which is defined using Euler’s Equation as

v(t) = V eiψ(t) (2.5)

From the above equation, the position can be expressed as

c(t) =

∫ t

0
v(u)du+ c0 (2.6)

with the initial position being c0.

From this point onward, the derivation of the model is split into two cases, a simplified case
and the general case. For the simplified case, we define the initial roll angle of the aircraft as zero
degrees which will be later generalized for all initial roll angles in the general case.

2.1 Simplified Case

The derivation of the kinematic model starts with a simplified case where a few constraints are
applied to the calculation. We first assume that the current roll angle of the aircraft is zero, i.e.,
the plane is flying with perfectly leveled wings. In addition, we assume that the current yaw angle,
as well as the current position of the aircraft are also zero.

The constraints can be defined as the following, where φ0 is the current roll angle, ψ0 is the current
yaw angle, and c0 is the current position of the aircraft:

φ0 = 0, (2.7)

ψ0 = 0, (2.8)

c0 = 0 + i0 (2.9)

We define the roll angle of the aircraft φ at any point of time t given a constant roll rate r to be a
linear function as the following:

φ(t) = rt (2.10)
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2.1 Simplified Case

Using the roll angle φ, we can then express the curvature of the trajectory of the aircraft at each
time point to be the following function:

ψ̇(t) = − g
V

tanφ(t) (2.11)

By integrating the curvature function, we can obtain the yaw angle of the aircraft with respect to
time:

ψ(t) = − g
V

∫ t

0
tanφ(u)du

from which we can write

ψ(t) =
g

rV
ln | cosφ(t)| (2.12)

Since φ ∈ (−π
2 ,

π
2 ), the cosine is always positive, which simplifies the above equation to

ψ(t) =
g

rV
ln cosφ(t) (2.13)

With the yaw angle function, we can write the ground velocity of the aircraft as a function of time
in the following complex form:

v(t) = V eiψ(t) = V ei
g
rV

ln cosφ(t) (2.14)

By integrating the velocity function, we obtain the following function that represents the position
of the aircraft as the function of time which, when solved, represents the kinematic model of the
aircraft:

c(t) = V

∫ t

0
ei

g
rV

ln cosφ(u)du

Before solving the integral, we substitute time for roll angle such that the model is a function of
roll angle:

γ = φ(u)

dγ = dφ(u)du = rdu

du =
1

r
dγ

from the above U-Substitution, we have

c(φ) =
V

r

∫ φ

0
ei

g
rV

ln cos(γ)dγ (2.15)

Apply U-Substitution on ln cos γ:

w = ln cos γ

dw = − tan γdγ

γ = ± cos−1 ew
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2.1 Simplified Case

In the above integral, γ ∈ [0, φ]. Therefore, γ has the same sign as that of φ. Hence, we can write 1

γ = sign(φ) cos−1 ew

dγ = − 1

tan γ
dw = − sign(φ)

1

tan cos−1 ew
dw = − sign(φ)

ew√
1− e2w

dw

Applying the above substitution yields the following:

c(φ) = − sign(φ)
V

r

∫ ln cosφ

0
e(1+i g

V r
)w
(
1− e2w

)− 1
2 dw

The form of the equation closely resembles the Incomplete Beta Function which is defined as the
following:

B(x; a, b) =

∫ x

0
ya−1(1− y)b−1dy (2.16)

As a result, we can perform another U-Substitution on e2w such that the equation satisfies the form
of the Incomplete Beta Function:

y = e2w

dy = 2ydw

Applying the above substitution yields the following:

c(φ) = − sign(φ)
V

2r

∫ cos2 φ

1
y(−

1
2
+i g

2V r
)(1− y)−

1
2dy = sign(φ)

V

2r

∫ 1

cos2 φ
ya−1(1− y)b−1dy

According to the definition of the Incomplete Beta function and the form of the above equation,
the parameters a, b for the Incomplete Beta Function can be defined as the following:

a =
1

2
+ i

g

2V r
, b =

1

2
(2.17)

And in order to satisfy the integral bound of the Incomplete Beta Function, we can decompose the
integral into the following form:

c(φ) = sign(φ)
V

2r

∫ 1

cos2 φ
ya−1(1− y)b−1dy

= sign(φ)
V

2r

[∫ 1

0
ya−1(1− y)b−1dy −

∫ cos2 φ

0
ya−1(1− y)b−1dy

]

from which we can conclude:

c(φ) = sign(φ)
V

2r

[
B(1; a, b)−B(cos2 φ; a, b)

]
(2.18)

1tan cos−1 x =

√
1−x2

x
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2.2 General Case

2.2 General Case

The simplified case is based on the current roll angle of the aircraft being zero. In general, however,
the aircraft’s roll angle φ0 during real flights can have any value in [−φmax, φmax], where φmax is
the maximum possible roll angle. To derive the general case, we can utilize the freedom of selecting
the initial yaw angle ψ0 and the initial position c0 which can be considered as a change of reference
frame.

We start the derivation for the general case by redefining the roll angle function which takes the
initial roll angle φ0 of the aircraft into consideration:

φ(t) = rt+ φ0 (2.19)

Similar to the simplified case, we have the curvature function defined as the following:

ψ̇(t) = − g
V

tanφ(t) (2.20)

integrating it yields the yaw angle function:

ψ(t) = − g
V

∫ t

0
tanφ(u)du+ ψ0

In contrast to the simplified case, the yaw angle in the general case evaluates to:

ψ(t) =
g

rV
(ln cosφ(t)− ln cosφ0) + ψ0

When solving the above integral, the goal here is to change the frame of reference such that
ψ(φ = 0) = 0. For φ = 0, we have φ0 + rt = 0 which means t = −φ0

r . A negative time value
represents a projection of the trajectory into the past that determines the center of our frame of
reference where the roll angle and the yaw angle of the aircraft is zero. By substituting the time
value into the yaw angle function

ψ(t = −φ0
r

) =
g

rV

[
ln cosφ(−φ0

r
)− ln cosφ0

]
+ ψ0 = 0

solving for ψ0 yields:

ψ0 =
g

rV
ln cosφ0 (2.21)

By transforming the frame of reference such that the aircraft’s yaw angle at the time t = 0 is ψ0,
we can write

ψ(t) =
g

rV
ln cosφ(t) (2.22)

The similar change-of-frame strategy can later be applied for the position function, which is identical
to the function in the simplified case except for the initial position c0:

c(t) = V

∫ t

0
eiψ(u)du+ c0 = V

∫ t

0
ei

g
rV

ln cosφ(u)du+ c0
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As in the simplified case, we substitute time for roll angle such that the trajectory model is a
function of roll angle:

c(φ) =
V

r

∫ φ

φ0

ei
g
rV

ln cos γdγ + c0 (2.23)

This equation for the position is now very similar to the simplified case in (2.15), which, combined
with the end result of the simple case in (2.18), yields

V

r

∫ φ

0
ei

g
rV

ln cos(γ)dγ = sign(φ)
V

2r

[
B(1; a, b)−B(cos2 φ; a, b)

]
To use the above relation for (2.23), the integral is split at 0:

c(φ) =
V

r

(∫ 0

φ0

ei
g
rV

ln cos γdγ +

∫ φ

0
ei

g
rV

ln cos γdγ

)
+ c0

=
V

r

(∫ φ

0
ei

g
rV

ln cos γdγ −
∫ φ0

0
ei

g
rV

ln cos γdγ

)
+ c0

=
V

2r

(
sign(φ)

[
B(1; a, b)−B(cos2 φ; a, b)

]
− sign(φ0)

[
B(1; a, b)−B(cos2 φ0; a, b)

])
+ c0

Similar to the yaw angle, we change the frame of reference such that c(φ = 0) = 0 + i0. For φ = 0,
we again have φ0 + rt = 0 and then t = −φ0

r . By substituting the negative time value into the
position function, we can solve for c0 as follows:

c0 = sign(φ0)
V

2r

[
B(1; a, b)−B(cos2 φ0; a, b)

]
(2.24)

from which we conclude

c(φ) = sign(φ)
V

2r

[
B(1; a, b)−B(cos2 φ; a, b)

]
(2.25)

3 Summary

The kinematic model describing the trajectory of an aircraft as a function of its roll angle φ with
constant roll rate r, constant altitude, and constant velocity is concluded by the following equations:

The position of the aircraft described in C is described as

c(φ) = sign(φ)
V

2r

[
B(1; a, b)−B(cos2 φ; a, b)

]
:= β(φ) (3.1)

where the initial position is

c0 = sign(φ0)
V

2r

[
B(1; a, b)−B(cos2 φ0; a, b)

]
:= β(φ0) (3.2)

The yaw angle of the aircraft is

ψ(t) =
g

rV
ln cosφ(t) (3.3)

and its initial yaw angle is

ψ0 =
g

rV
ln cosφ0. (3.4)
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